Product Description
L Type Self Tapping ScrewScrew
Material | Stainless Steel 304 / 316 | |||
Size |
M3-M8 |
|||
Surface Treating |
Polishing |
|||
Delivery time |
7-15 weokdays |
|||
Application Scenarios |
Building & Wood & Furniture |
Threaded Rods | Thumb screws | Socket Screws | Security Screws |
Shoulder Screws | Rivets | Solar Hanger Bolt | Pins |
Springs | Captive Screws | U/L/J bolts | Machine Screws |
Our Advantages
Warehouse
Packaging & Shipping
Payment
Customers
FAQ:
Q: Are you trading company or manufacturer ?
A: We are manufacturer .
Q: How long is your delivery time?
A: Generally it is 7-15 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to specific item and quantity.
Shortest Delivery: We have large stock, 3 days for stock items,7-15days for production.
Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample for free charge but do not pay the shipping cost.
Q: What is your terms of payment ?
A: Less than USD5000———–100% T/T in advance.
More than USD5000———–50% T/T in advance ,balance before shippment.
Other terms is welcome.
Q: What is your price terms ?
A: EXW/FOB/CIF/CFR/FCA/CPT/CIP/DAP/DDP
Q:What’s your product range?
A: Our product range includes screws, nuts, knobs, bolts, washers, rivet, anchor and CNC parts. We strictly implement various quality standards like GB, ISO, DIN, JIS, AISI NFE and BSW.Non-standard products also accepted.
Q:Why should I choose you? What’s your advantages? Industries you are serving?
A: We are a professional manufacturer and have many years production and management experience in the field of fasteners .We can provide our customers with a good solution in the area of production design, production process,packaging and after-sale service.Customer satisfaction is our sole pursuit.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Stainless Steel |
---|---|
Usage: | Heavy Duty Clamp, Pipe Clamp, Glass Clamp, L Type Self Tapping Screwscrew |
Structure: | Self Tapping Screw |
Samples: |
US$ 10/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How do environmental factors impact the choice of materials for eye bolt screws?
Environmental factors play a crucial role in determining the appropriate choice of materials for eye bolt screws. Different environments can subject eye bolt screws to various conditions that can affect their performance, durability, and resistance to corrosion. Here’s a detailed explanation of how environmental factors impact the selection of materials for eye bolt screws:
- Corrosion Resistance: One of the primary considerations when selecting materials for eye bolt screws is their resistance to corrosion. Environmental factors such as moisture, humidity, saltwater, chemicals, and exposure to corrosive gases can accelerate the corrosion process. In corrosive environments, materials like stainless steel, galvanized steel, or other corrosion-resistant alloys are commonly chosen to ensure the long-term integrity and reliability of the eye bolt screws.
- Temperature Extremes: Extreme temperatures can impact the mechanical properties of materials used in eye bolt screws. High temperatures can cause thermal expansion, which may affect the dimensional stability and load-bearing capacity of the screws. Conversely, low temperatures can make certain materials brittle and prone to fracture. Therefore, eye bolt screws intended for use in extreme temperature environments may require materials with high-temperature resistance, low-temperature toughness, or thermal stability.
- UV Exposure: Eye bolt screws used in outdoor applications are often exposed to ultraviolet (UV) radiation from sunlight. Prolonged UV exposure can degrade the mechanical properties and surface finish of certain materials. To mitigate the effects of UV radiation, materials with UV-resistant coatings or additives may be chosen. Additionally, materials like stainless steel or non-metallic composites that have inherent UV resistance can be used to ensure the longevity and performance of the eye bolt screws.
- Chemical Exposure: Environments with chemical exposure, such as industrial facilities or laboratories, require eye bolt screws that can withstand the specific chemicals present. Certain chemicals can cause corrosion, degradation, or chemical reactions with certain materials. In such cases, materials with high chemical resistance, such as specific grades of stainless steel or other alloys, may be selected to ensure the eye bolt screws can withstand the chemical environment without compromising their integrity.
- Outdoor and Marine Environments: Eye bolt screws used in outdoor or marine environments are exposed to a combination of factors, including moisture, humidity, temperature variations, UV radiation, and saltwater exposure. These environments are particularly challenging due to the increased risk of corrosion. Eye bolt screws for outdoor or marine applications often require materials designed to withstand these harsh conditions, such as marine-grade stainless steel, galvanized steel, or other corrosion-resistant alloys.
- Electrical Conductivity: In some applications, electrical conductivity or non-conductivity of eye bolt screws may be a critical consideration. Certain environments require non-conductive materials to prevent electrical currents from flowing through the screws, reducing the risk of electrical hazards. Conversely, in electrical grounding or bonding applications, conductive materials like brass or certain steel alloys may be preferred to ensure proper electrical continuity.
By carefully considering the environmental factors, engineers and designers can choose materials for eye bolt screws that possess the necessary properties to withstand the specific conditions they will encounter. This ensures the longevity, performance, and safety of the eye bolt screws in their intended environments.
Can eye bolt screws be used for both temporary and permanent installations?
Yes, eye bolt screws can be used for both temporary and permanent installations, depending on the specific application and requirements. Let’s explore the use of eye bolt screws in both scenarios:
Temporary Installations:
Eye bolt screws are commonly employed in temporary installations where a temporary attachment point is needed for lifting or securing loads. Some examples of temporary installations include:
- Construction and Rigging: Eye bolt screws can be used during construction or rigging projects to provide temporary attachment points for lifting equipment, securing temporary structures, or supporting temporary loads. They offer a quick and convenient solution for temporary lifting operations and can be easily installed and removed as needed.
- Events and Exhibitions: Eye bolt screws are often used in event setups, such as stage installations, exhibition displays, or hanging decorations. They provide a temporary attachment point for suspending lighting, audio equipment, banners, or other temporary fixtures. Once the event or exhibition is over, the eye bolt screws can be removed without causing permanent damage to the venue.
- Temporary Storage and Transport: Eye bolt screws can be used in temporary storage or transport applications to secure loads during transit or storage. They provide a reliable attachment point for securing items with ropes, cables, or straps, ensuring that they remain stable and protected during temporary storage or transportation.
Permanent Installations:
Eye bolt screws are also suitable for permanent installations that require a long-term or permanent attachment point. Some examples of permanent installations include:
- Industrial and Manufacturing: Eye bolt screws are commonly used in industrial and manufacturing settings to create permanent attachment points for lifting heavy machinery, equipment, or structural components. These installations are designed to be long-lasting and provide a reliable and secure connection for ongoing lifting operations.
- Marine and Boating: Eye bolt screws with corrosion-resistant materials, such as stainless steel, are frequently used in marine and boating applications. They serve as permanent attachment points for securing ropes, cables, or chains on boats, docks, or other marine structures, ensuring safe and reliable mooring or towing operations.
- Building and Infrastructure: Eye bolt screws are utilized in building and infrastructure projects for permanent installations. They are often embedded into concrete or other structural materials to create permanent attachment points for lifting, suspension, or anchoring purposes. These installations are designed to withstand long-term loads and provide a durable and dependable attachment solution.
It is important to note that regardless of whether eye bolt screws are used for temporary or permanent installations, proper installation techniques, load calculations, and adherence to safety guidelines are essential to ensure the effectiveness, reliability, and safety of the installations.
Can you explain the different types of eye bolt screws available in the market?
In the market, there are several different types of eye bolt screws available, each with its own design and specific applications. These variations in design make eye bolt screws suitable for a wide range of uses. Here are some of the common types of eye bolt screws:
- Regular Eye Bolt: Regular eye bolts are the most basic type of eye bolt screws. They feature a straight shank with a looped eye at the end. The eye is typically circular or oval-shaped. Regular eye bolts are used for various applications that require a simple and reliable attachment point.
- Shoulder Eye Bolt: Shoulder eye bolts have a shoulder or collar between the shank and the eye. The shoulder provides additional support and prevents the bolt from pulling through the attachment point. Shoulder eye bolts are often used in lifting applications, where stability and load-bearing capacity are crucial.
- Machine Shoulder Eye Bolt: Machine shoulder eye bolts are similar to shoulder eye bolts but have a smaller shank diameter relative to the eye size. They are specifically designed for use with machinery, where space constraints or specific mounting requirements exist.
- Lag Eye Bolt: Lag eye bolts have a lag screw thread on the shank, allowing them to be screwed directly into wood or other materials without the need for a pre-drilled hole. They are commonly used for attaching ropes, cables, or hardware to wooden structures, such as decks, fences, or playground equipment.
- Welded Eye Bolt: Welded eye bolts have a welded eye instead of a looped eye. The eye is permanently welded to the shank, providing a strong and durable attachment point. Welded eye bolts are often used in heavy-duty applications, such as construction, manufacturing, or rigging.
- Swivel Eye Bolt: Swivel eye bolts feature a swiveling eye that allows for rotation and movement. The swivel action helps prevent twisting or tangling of ropes or cables. Swivel eye bolts are commonly used in applications where dynamic or multi-directional forces are involved, such as lifting or rigging operations.
- Shoulder Nut Eye Bolt: Shoulder nut eye bolts have a shoulder between the shank and the eye, similar to shoulder eye bolts. However, they also feature a nut on the shank, allowing for adjustable tension or positioning. Shoulder nut eye bolts are often used in tensioning applications or for attaching hanging objects that require precise alignment.
The choice of the appropriate type of eye bolt screw depends on the specific requirements of the application, including load capacity, attachment method, space constraints, and functionality. It is important to select eye bolt screws that meet the necessary specifications, such as load ratings, material strength, and corrosion resistance, to ensure safe and reliable performance.
When using eye bolt screws, it is essential to follow manufacturer guidelines, industry standards, and applicable safety regulations. Proper installation, torque values, and regular inspections are necessary to maintain the integrity and reliability of eye bolt screw attachments.
editor by CX 2024-02-26
China Good quality St4.2 St4.5 St4.6 St4.8 U Type J L I Eye Hook Bolt Galvanzied SUS304 316 Black Oxide Wood Floor Wall Furniture L Screw with high quality
Product Description
L Type Self Tapping ScrewScrew
Material | Stainless Steel 304 / 316 | |||
Size |
M3-M8 |
|||
Surface Treating |
Polishing |
|||
Delivery time |
7-15 weokdays |
|||
Application Scenarios |
Building & Wood & Furniture |
Threaded Rods | Thumb screws | Socket Screws | Security Screws |
Shoulder Screws | Rivets | Solar Hanger Bolt | Pins |
Springs | Captive Screws | U/L/J bolts | Machine Screws |
Our Advantages
Warehouse
Packaging & Shipping
Payment
Customers
FAQ:
Q: Are you trading company or manufacturer ?
A: We are manufacturer .
Q: How long is your delivery time?
A: Generally it is 7-15 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to specific item and quantity.
Shortest Delivery: We have large stock, 3 days for stock items,7-15days for production.
Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample for free charge but do not pay the shipping cost.
Q: What is your terms of payment ?
A: Less than USD5000———–100% T/T in advance.
More than USD5000———–50% T/T in advance ,balance before shippment.
Other terms is welcome.
Q: What is your price terms ?
A: EXW/FOB/CIF/CFR/FCA/CPT/CIP/DAP/DDP
Q:What’s your product range?
A: Our product range includes screws, nuts, knobs, bolts, washers, rivet, anchor and CNC parts. We strictly implement various quality standards like GB, ISO, DIN, JIS, AISI NFE and BSW.Non-standard products also accepted.
Q:Why should I choose you? What’s your advantages? Industries you are serving?
A: We are a professional manufacturer and have many years production and management experience in the field of fasteners .We can provide our customers with a good solution in the area of production design, production process,packaging and after-sale service.Customer satisfaction is our sole pursuit.
What Are Screw Shaft Threads?
A screw shaft is a threaded part used to fasten other components. The threads on a screw shaft are often described by their Coefficient of Friction, which describes how much friction is present between the mating surfaces. This article discusses these characteristics as well as the Material and Helix angle. You’ll have a better understanding of your screw shaft’s threads after reading this article. Here are some examples. Once you understand these details, you’ll be able to select the best screw nut for your needs.
Coefficient of friction between the mating surfaces of a nut and a screw shaft
There are 2 types of friction coefficients. Dynamic friction and static friction. The latter refers to the amount of friction a nut has to resist an opposing motion. In addition to the material strength, a higher coefficient of friction can cause stick-slip. This can lead to intermittent running behavior and loud squeaking. Stick-slip may lead to a malfunctioning plain bearing. Rough shafts can be used to improve this condition.
The 2 types of friction coefficients are related to the applied force. When applying force, the applied force must equal the nut’s pitch diameter. When the screw shaft is tightened, the force may be removed. In the case of a loosening clamp, the applied force is smaller than the bolt’s pitch diameter. Therefore, the higher the property class of the bolt, the lower the coefficient of friction.
In most cases, the screwface coefficient of friction is lower than the nut face. This is because of zinc plating on the joint surface. Moreover, power screws are commonly used in the aerospace industry. Whether or not they are power screws, they are typically made of carbon steel, alloy steel, or stainless steel. They are often used in conjunction with bronze or plastic nuts, which are preferred in higher-duty applications. These screws often require no holding brakes and are extremely easy to use in many applications.
The coefficient of friction between the mating surfaces of t-screws is highly dependent on the material of the screw and the nut. For example, screws with internal lubricated plastic nuts use bearing-grade bronze nuts. These nuts are usually used on carbon steel screws, but can be used with stainless steel screws. In addition to this, they are easy to clean.
Helix angle
In most applications, the helix angle of a screw shaft is an important factor for torque calculation. There are 2 types of helix angle: right and left hand. The right hand screw is usually smaller than the left hand one. The left hand screw is larger than the right hand screw. However, there are some exceptions to the rule. A left hand screw may have a greater helix angle than a right hand screw.
A screw’s helix angle is the angle formed by the helix and the axial line. Although the helix angle is not usually changed, it can have a significant effect on the processing of the screw and the amount of material conveyed. These changes are more common in 2 stage and special mixing screws, and metering screws. These measurements are crucial for determining the helix angle. In most cases, the lead angle is the correct angle when the screw shaft has the right helix angle.
High helix screws have large leads, sometimes up to 6 times the screw diameter. These screws reduce the screw diameter, mass, and inertia, allowing for higher speed and precision. High helix screws are also low-rotation, so they minimize vibrations and audible noises. But the right helix angle is important in any application. You must carefully choose the right type of screw for the job at hand.
If you choose a screw gear that has a helix angle other than parallel, you should select a thrust bearing with a correspondingly large center distance. In the case of a screw gear, a 45-degree helix angle is most common. A helix angle greater than zero degrees is also acceptable. Mixing up helix angles is beneficial because it allows for a variety of center distances and unique applications.
Thread angle
The thread angle of a screw shaft is measured from the base of the head of the screw to the top of the screw’s thread. In America, the standard screw thread angle is 60 degrees. The standard thread angle was not widely adopted until the early twentieth century. A committee was established by the Franklin Institute in 1864 to study screw threads. The committee recommended the Sellers thread, which was modified into the United States Standard Thread. The standardized thread was adopted by the United States Navy in 1868 and was recommended for construction by the Master Car Builders’ Association in 1871.
Generally speaking, the major diameter of a screw’s threads is the outside diameter. The major diameter of a nut is not directly measured, but can be determined with go/no-go gauges. It is necessary to understand the major and minor diameters in relation to each other in order to determine a screw’s thread angle. Once this is known, the next step is to determine how much of a pitch is necessary to ensure a screw’s proper function.
Helix angle and thread angle are 2 different types of angles that affect screw efficiency. For a lead screw, the helix angle is the angle between the helix of the thread and the line perpendicular to the axis of rotation. A lead screw has a greater helix angle than a helical one, but has higher frictional losses. A high-quality lead screw requires a higher torque to rotate. Thread angle and lead angle are complementary angles, but each screw has its own specific advantages.
Screw pitch and TPI have little to do with tolerances, craftsmanship, quality, or cost, but rather the size of a screw’s thread relative to its diameter. Compared to a standard screw, the fine and coarse threads are easier to tighten. The coarser thread is deeper, which results in lower torques. If a screw fails because of torsional shear, it is likely to be a result of a small minor diameter.
Material
Screws have a variety of different sizes, shapes, and materials. They are typically machined on CNC machines and lathes. Each type is used for different purposes. The size and material of a screw shaft are influenced by how it will be used. The following sections give an overview of the main types of screw shafts. Each 1 is designed to perform a specific function. If you have questions about a specific type, contact your local machine shop.
Lead screws are cheaper than ball screws and are used in light-duty, intermittent applications. Lead screws, however, have poor efficiency and are not recommended for continuous power transmission. But, they are effective in vertical applications and are more compact. Lead screws are typically used as a kinematic pair with a ball screw. Some types of lead screws also have self-locking properties. Because they have a low coefficient of friction, they have a compact design and very few parts.
Screws are made of a variety of metals and alloys. Steel is an economical and durable material, but there are also alloy steel and stainless steel types. Bronze nuts are the most common and are often used in higher-duty applications. Plastic nuts provide low-friction, which helps reduce the drive torques. Stainless steel screws are also used in high-performance applications, and may be made of titanium. The materials used to create screw shafts vary, but they all have their specific functions.
Screws are used in a wide range of applications, from industrial and consumer products to transportation equipment. They are used in many different industries, and the materials they’re made of can determine their life. The life of a screw depends on the load that it bears, the design of its internal structure, lubrication, and machining processes. When choosing screw assemblies, look for a screw made from the highest quality steels possible. Usually, the materials are very clean, so they’re a great choice for a screw. However, the presence of imperfections may cause a normal fatigue failure.
Self-locking features
Screws are known to be self-locking by nature. The mechanism for this feature is based on several factors, such as the pitch angle of the threads, material pairing, lubrication, and heating. This feature is only possible if the shaft is subjected to conditions that are not likely to cause the threads to loosen on their own. The self-locking ability of a screw depends on several factors, including the pitch angle of the thread flank and the coefficient of sliding friction between the 2 materials.
One of the most common uses of screws is in a screw top container lid, corkscrew, threaded pipe joint, vise, C-clamp, and screw jack. Other applications of screw shafts include transferring power, but these are often intermittent and low-power operations. Screws are also used to move material in Archimedes’ screw, auger earth drill, screw conveyor, and micrometer.
A common self-locking feature for a screw is the presence of a lead screw. A screw with a low PV value is safe to operate, but a screw with high PV will need a lower rotation speed. Another example is a self-locking screw that does not require lubrication. The PV value is also dependent on the material of the screw’s construction, as well as its lubrication conditions. Finally, a screw’s end fixity – the way the screw is supported – affects the performance and efficiency of a screw.
Lead screws are less expensive and easier to manufacture. They are a good choice for light-weight and intermittent applications. These screws also have self-locking capabilities. They can be self-tightened and require less torque for driving than other types. The advantage of lead screws is their small size and minimal number of parts. They are highly efficient in vertical and intermittent applications. They are not as accurate as lead screws and often have backlash, which is caused by insufficient threads.