Product Description
Spring Plungers Hex Socket Cone Point Set Screw
Material | Stainless Steel |
Colour | Silver |
Type | Cone Point Hex Socket |
OEM | Available |
Bolts | Springs | Socket Screws |
Insert Nuts | Pins | Rivet Nuts |
Thumb/Shoulder Screws | Captive Screws | Self Clinching Systems |
Our Advantages
Warehouse
Packaging & Shipping
Payment
Customers
FAQ
Q: How long is your delivery time?
A: We have large stock, 3 days for stock items,7-15days for production.
Q: Do you provide samples? Is it free or need extra fees ?
A: Yes, we could offer free samples for the items in stock,just need to pay shipping cost.
Mold fee is necessary for customized item.
Q: What is your terms of payment ?
A: 50% in advance ,50% before delivery.
100% in advance if less than USD5000.
Q: What’s your price terms ?
A: EXW/FOB/CIF/CFR/FCA/CPT/CIP/DAP/DDP
Q: What’s your product range?
A: Our product range includes screws, nuts, bolts, washers, spring,rivet, anchor and CNC parts.
Q: Are you trading company or manufacturer ?
A: We are manufacturer.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Stainless Steel |
---|---|
Type: | Allen Socket Screw |
Groove: | Hexagon |
Samples: |
US$ 50/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How does the choice of eye bolt screws impact the overall safety and reliability of installations?
The choice of eye bolt screws plays a crucial role in ensuring the overall safety and reliability of installations. Selecting the appropriate eye bolt screws based on factors such as load requirements, environmental conditions, and material compatibility is essential to prevent failures, maintain structural integrity, and ensure the safety of personnel. Here’s a detailed explanation of how the choice of eye bolt screws impacts the overall safety and reliability of installations:
- Load Capacity: Eye bolt screws are designed to bear specific loads, and choosing screws with an appropriate load capacity is paramount. Using eye bolt screws with insufficient load capacity can lead to overloading, deformation, or failure, jeopardizing the safety and reliability of the installation. It is crucial to consider the expected loads and select eye bolt screws that can handle them safely.
- Material Strength: Eye bolt screws are available in various materials, including stainless steel, carbon steel, and alloy steel. The choice of material should be based on the application’s requirements, considering factors such as strength, corrosion resistance, temperature resistance, and compatibility with other components. Selecting eye bolt screws made from the appropriate material ensures durability and long-term reliability of the installation.
- Thread Type and Size: Eye bolt screws come in different thread types and sizes. Choosing the correct thread type (such as UNC, UNF, or metric) and size ensures proper engagement and secure fastening. Mismatched or incompatible threads can result in weak connections, reduced load capacity, or thread damage, compromising the safety and reliability of the installation.
- Environmental Considerations: Consider the environmental conditions in which the eye bolt screws will be used. Factors such as exposure to moisture, chemicals, high temperatures, or extreme weather conditions can affect the performance and longevity of the screws. Selecting eye bolt screws with appropriate coatings, materials, or corrosion-resistant properties ensures their reliability and prevents premature failure due to environmental factors.
- Installation Method: The choice of eye bolt screws can also impact the installation method and techniques. Some eye bolt screws may require specific installation procedures, such as torque specifications or specific tools. Following the recommended installation practices ensures proper engagement, load distribution, and overall safety of the installation.
- Compliance with Standards: Eye bolt screws should meet relevant industry standards, guidelines, or regulations. Choosing screws that comply with recognized standards ensures that they have undergone rigorous testing, meet specific quality requirements, and are suitable for the intended application. Compliance with standards enhances the safety and reliability of the installation.
By carefully considering these factors and selecting the appropriate eye bolt screws, the overall safety and reliability of installations can be significantly enhanced. It is advisable to consult with manufacturers, engineers, or professionals experienced in the field to ensure the correct choice of eye bolt screws for specific applications. Regular inspections, maintenance, and adherence to safety protocols further contribute to maintaining the safety and reliability of installations over time.
What safety guidelines should be followed when using eye bolt screws in lifting applications?
When using eye bolt screws in lifting applications, it is crucial to follow specific safety guidelines to ensure the safety of personnel, prevent accidents, and maintain the integrity of the lifting operation. Here are some important safety guidelines to consider:
- Proper Selection: Choose eye bolt screws that are appropriate for the intended lifting application. Consider factors such as load capacity, material strength, corrosion resistance, and compliance with relevant standards to ensure the selected eye bolt screws can safely handle the expected loads and environmental conditions.
- Inspect Regularly: Regularly inspect eye bolt screws for any signs of damage, wear, or deformation. Inspections should be carried out before each use and periodically during the service life of the eye bolt screws. If any defects or issues are identified, the eye bolt screws should be replaced or repaired before further use.
- Proper Installation: Follow the manufacturer’s instructions for the proper installation of eye bolt screws. Ensure that the eye bolt screws are securely and correctly installed in a compatible structure or support system. Pay attention to the recommended torque values and installation techniques to achieve proper engagement and load distribution.
- Load Calculation: Determine the load requirements and calculate the appropriate load capacity for the eye bolt screws. Avoid overloading the eye bolt screws beyond their rated capacity, as this can lead to failure and unsafe lifting conditions. Consider dynamic loads, shock loads, and any other relevant factors in the load calculation.
- Use Proper Hardware: Select and use appropriate hardware, such as shackles, hooks, or connectors, that are compatible with the eye bolt screws and the lifting equipment being used. Make sure the hardware is in good condition, properly rated for the loads involved, and securely attached to the eye bolt screws.
- Avoid Side Loading: Eye bolt screws should be used in a manner that avoids side loading. Side loading, which occurs when the load is applied at an angle to the axis of the eye bolt screw, can significantly reduce its load capacity and lead to failure. Ensure that the load is applied in line with the axis of the eye bolt screws.
- Regular Maintenance: Implement a routine maintenance program to ensure the ongoing safety and reliability of the eye bolt screws. This may include lubrication, cleaning, and periodic inspections to identify any signs of wear, corrosion, or other issues that could compromise the integrity of the eye bolt screws.
- Training and Awareness: Provide proper training and awareness to personnel involved in the lifting operation. Ensure that they understand the safe and proper use of eye bolt screws, including the importance of load limits, inspection procedures, and adherence to safety guidelines. Promote a culture of safety and encourage reporting of any concerns or incidents.
- Compliance with Standards: Familiarize yourself with relevant industry standards, regulations, and guidelines pertaining to lifting operations and eye bolt screws. Ensure that the selected eye bolt screws and the lifting operation comply with these standards to maintain safety and legal compliance.
By following these safety guidelines, you can minimize the risk of accidents, prevent equipment failures, and ensure the safe and efficient use of eye bolt screws in lifting applications.
Can you explain the different types of eye bolt screws available in the market?
In the market, there are several different types of eye bolt screws available, each with its own design and specific applications. These variations in design make eye bolt screws suitable for a wide range of uses. Here are some of the common types of eye bolt screws:
- Regular Eye Bolt: Regular eye bolts are the most basic type of eye bolt screws. They feature a straight shank with a looped eye at the end. The eye is typically circular or oval-shaped. Regular eye bolts are used for various applications that require a simple and reliable attachment point.
- Shoulder Eye Bolt: Shoulder eye bolts have a shoulder or collar between the shank and the eye. The shoulder provides additional support and prevents the bolt from pulling through the attachment point. Shoulder eye bolts are often used in lifting applications, where stability and load-bearing capacity are crucial.
- Machine Shoulder Eye Bolt: Machine shoulder eye bolts are similar to shoulder eye bolts but have a smaller shank diameter relative to the eye size. They are specifically designed for use with machinery, where space constraints or specific mounting requirements exist.
- Lag Eye Bolt: Lag eye bolts have a lag screw thread on the shank, allowing them to be screwed directly into wood or other materials without the need for a pre-drilled hole. They are commonly used for attaching ropes, cables, or hardware to wooden structures, such as decks, fences, or playground equipment.
- Welded Eye Bolt: Welded eye bolts have a welded eye instead of a looped eye. The eye is permanently welded to the shank, providing a strong and durable attachment point. Welded eye bolts are often used in heavy-duty applications, such as construction, manufacturing, or rigging.
- Swivel Eye Bolt: Swivel eye bolts feature a swiveling eye that allows for rotation and movement. The swivel action helps prevent twisting or tangling of ropes or cables. Swivel eye bolts are commonly used in applications where dynamic or multi-directional forces are involved, such as lifting or rigging operations.
- Shoulder Nut Eye Bolt: Shoulder nut eye bolts have a shoulder between the shank and the eye, similar to shoulder eye bolts. However, they also feature a nut on the shank, allowing for adjustable tension or positioning. Shoulder nut eye bolts are often used in tensioning applications or for attaching hanging objects that require precise alignment.
The choice of the appropriate type of eye bolt screw depends on the specific requirements of the application, including load capacity, attachment method, space constraints, and functionality. It is important to select eye bolt screws that meet the necessary specifications, such as load ratings, material strength, and corrosion resistance, to ensure safe and reliable performance.
When using eye bolt screws, it is essential to follow manufacturer guidelines, industry standards, and applicable safety regulations. Proper installation, torque values, and regular inspections are necessary to maintain the integrity and reliability of eye bolt screw attachments.
editor by Dream 2024-04-23
China supplier Stainless Steel Cone Point Hex Socket Set Screw
Product Description
Stainless Steel Cone Point Hex Socket Set Screw
Material | Stainless Steel |
Colour | Silver |
Type | Cone Point Hex Socket |
OEM | Available |
Bolts | Springs | Socket Screws |
Insert Nuts | Pins | Rivet Nuts |
Thumb/Shoulder Screws | Captive Screws | Self Clinching Systems |
Our Advantages
Warehouse
Packaging & Shipping
Payment
Customers
FAQ
Q: How long is your delivery time?
A: We have large stock, 3 days for stock items,7-15days for production.
Q: Do you provide samples? Is it free or need extra fees ?
A: Yes, we could offer free samples for the items in stock,just need to pay shipping cost.
Mold fee is necessary for customized item.
Q: What is your terms of payment ?
A: 50% in advance ,50% before delivery.
100% in advance if less than USD5000.
Q: What’s your price terms ?
A: EXW/FOB/CIF/CFR/FCA/CPT/CIP/DAP/DDP
Q: What’s your product range?
A: Our product range includes screws, nuts, bolts, washers, spring,rivet, anchor and CNC parts.
Q: Are you trading company or manufacturer ?
A: We are manufacturer.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Material: | Stainless Steel |
---|---|
Type: | Allen Socket Screw |
Groove: | Hexagon |
Samples: |
US$ 10/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
What maintenance practices are recommended to ensure the longevity of eye bolt screws?
Maintaining eye bolt screws is crucial to ensure their longevity, performance, and safety. Regular maintenance practices help identify and address potential issues, prevent corrosion, and extend the lifespan of the screws. Here’s a detailed explanation of recommended maintenance practices for eye bolt screws:
- Visual Inspection: Regularly inspect eye bolt screws to identify any signs of damage, wear, or deformation. Look for cracks, bending, thread damage, or signs of corrosion. Ensure that the eye bolt screws are securely fastened and that the threads are clean and free from debris.
- Cleaning: Clean eye bolt screws periodically to remove dirt, dust, grease, or other contaminants that can contribute to corrosion or interfere with their performance. Use appropriate cleaning agents or solvents and ensure thorough drying after cleaning.
- Lubrication: Apply a suitable lubricant to the threads and bearing surfaces of the eye bolt screws to reduce friction and prevent galling or seizing. Lubrication helps maintain smooth operation and minimizes wear and tear. Choose lubricants compatible with the material of the screws and the specific operating conditions.
- Torque Checking: Regularly check the torque of the eye bolt screws to ensure they remain properly tightened. Over time, vibrations or loading may cause the screws to loosen. Use a torque wrench to verify that the screws are tightened to the recommended torque values specified by the manufacturer or applicable standards.
- Load Capacity Verification: If eye bolt screws are subjected to heavy loads or used in critical applications, periodic load capacity verification may be necessary. This involves conducting load tests or inspections to ensure that the screws can still safely support the intended loads without any signs of deformation or failure.
- Corrosion Protection: Eye bolt screws used in outdoor or corrosive environments should be protected against corrosion. Apply appropriate coatings or corrosion inhibitors to the screws to provide an additional layer of protection. Regularly inspect the corrosion protection measures and reapply as necessary.
- Replacement of Damaged Screws: If any signs of significant damage or wear are detected during inspections, promptly replace the affected eye bolt screws. Continuing to use damaged or compromised screws can lead to unsafe conditions and potential failure.
It is essential to follow the manufacturer’s recommendations and any applicable industry standards or regulations when implementing maintenance practices for eye bolt screws. Additionally, consider the specific environmental conditions, load requirements, and operating factors when establishing a maintenance schedule.
By implementing regular maintenance practices, you can maximize the lifespan of eye bolt screws, reduce the risk of failures, and ensure their continued performance and safety in various applications.
Can you provide examples of machinery or structures that commonly use eye bolt screws?
Eye bolt screws are utilized in a wide range of machinery and structures where a secure and reliable attachment point is required for lifting, suspension, or anchoring purposes. Here are some examples of machinery and structures that commonly use eye bolt screws:
- Cranes and Hoists: Cranes and hoists often incorporate eye bolt screws as attachment points for lifting cables, chains, or slings. Eye bolt screws provide a secure connection between the lifting equipment and the load being lifted, ensuring proper load distribution and stability during lifting operations.
- Material Handling Equipment: Various types of material handling equipment, such as forklifts, pallet jacks, and lifting trolleys, may feature eye bolt screws as part of their design. These eye bolt screws serve as attachment points for hooks, clamps, or other lifting devices, enabling the equipment to safely handle and transport loads.
- Industrial Machinery: Many types of industrial machinery incorporate eye bolt screws for lifting, securing, or anchoring components or subassemblies. Examples include presses, stamping machines, machining centers, and conveyor systems. Eye bolt screws provide a reliable means of attaching equipment or fixtures to the machinery, ensuring stability and safety during operation.
- Marine and Boating Structures: Eye bolt screws are commonly used in marine and boating structures, such as boats, docks, and marinas. They serve as attachment points for ropes, cables, or chains used in mooring, towing, or securing operations. Eye bolt screws with corrosion-resistant materials are especially important in marine environments.
- Stage and Rigging Systems: The entertainment industry often utilizes eye bolt screws in stage and rigging systems. They provide attachment points for suspending lighting fixtures, audio equipment, scenery, and other components. Eye bolt screws enable the safe and precise positioning of equipment during performances or events.
- Building and Construction: Eye bolt screws are commonly used in building and construction applications. They can be embedded or attached to structural elements to create attachment points for lifting, securing, or hanging loads. Eye bolt screws are employed in various construction scenarios, including steel structures, concrete formwork, scaffolding, and temporary installations.
- Transportation and Cargo: Eye bolt screws are utilized in transportation and cargo applications to secure loads during transit. They provide attachment points for ropes, straps, or chains used to secure cargo on trucks, trailers, or shipping containers. Eye bolt screws ensure that the loads remain stable and properly supported during transportation.
These examples illustrate the diverse range of machinery and structures that commonly rely on eye bolt screws for safe and effective lifting, suspension, or anchoring operations. The specific design and application of eye bolt screws may vary depending on the unique requirements of each industry or use case.
Can you explain the different types of eye bolt screws available in the market?
In the market, there are several different types of eye bolt screws available, each with its own design and specific applications. These variations in design make eye bolt screws suitable for a wide range of uses. Here are some of the common types of eye bolt screws:
- Regular Eye Bolt: Regular eye bolts are the most basic type of eye bolt screws. They feature a straight shank with a looped eye at the end. The eye is typically circular or oval-shaped. Regular eye bolts are used for various applications that require a simple and reliable attachment point.
- Shoulder Eye Bolt: Shoulder eye bolts have a shoulder or collar between the shank and the eye. The shoulder provides additional support and prevents the bolt from pulling through the attachment point. Shoulder eye bolts are often used in lifting applications, where stability and load-bearing capacity are crucial.
- Machine Shoulder Eye Bolt: Machine shoulder eye bolts are similar to shoulder eye bolts but have a smaller shank diameter relative to the eye size. They are specifically designed for use with machinery, where space constraints or specific mounting requirements exist.
- Lag Eye Bolt: Lag eye bolts have a lag screw thread on the shank, allowing them to be screwed directly into wood or other materials without the need for a pre-drilled hole. They are commonly used for attaching ropes, cables, or hardware to wooden structures, such as decks, fences, or playground equipment.
- Welded Eye Bolt: Welded eye bolts have a welded eye instead of a looped eye. The eye is permanently welded to the shank, providing a strong and durable attachment point. Welded eye bolts are often used in heavy-duty applications, such as construction, manufacturing, or rigging.
- Swivel Eye Bolt: Swivel eye bolts feature a swiveling eye that allows for rotation and movement. The swivel action helps prevent twisting or tangling of ropes or cables. Swivel eye bolts are commonly used in applications where dynamic or multi-directional forces are involved, such as lifting or rigging operations.
- Shoulder Nut Eye Bolt: Shoulder nut eye bolts have a shoulder between the shank and the eye, similar to shoulder eye bolts. However, they also feature a nut on the shank, allowing for adjustable tension or positioning. Shoulder nut eye bolts are often used in tensioning applications or for attaching hanging objects that require precise alignment.
The choice of the appropriate type of eye bolt screw depends on the specific requirements of the application, including load capacity, attachment method, space constraints, and functionality. It is important to select eye bolt screws that meet the necessary specifications, such as load ratings, material strength, and corrosion resistance, to ensure safe and reliable performance.
When using eye bolt screws, it is essential to follow manufacturer guidelines, industry standards, and applicable safety regulations. Proper installation, torque values, and regular inspections are necessary to maintain the integrity and reliability of eye bolt screw attachments.
editor by Dream 2024-04-23
China Best Sales Hand Industrial SS304 Hex Socket Cone Point Set Screw near me manufacturer
Product Description
Spring Plungers Hex Socket Cone Point Set Screw
Material | Stainless Steel |
Colour | Silver |
Type | Cone Point Hex Socket |
OEM | Available |
Bolts | Springs | Socket Screws |
Insert Nuts | Pins | Rivet Nuts |
Thumb/Shoulder Screws | Captive Screws | Self Clinching Systems |
Our Advantages
Warehouse
Packaging & Shipping
Payment
Customers
FAQ
Q: How long is your delivery time?
A: We have large stock, 3 days for stock items,7-15days for production.
Q: Do you provide samples? Is it free or need extra fees ?
A: Yes, we could offer free samples for the items in stock,just need to pay shipping cost.
Mold fee is necessary for customized item.
Q: What is your terms of payment ?
A: 50% in advance ,50% before delivery.
100% in advance if less than USD5000.
Q: What’s your price terms ?
A: EXW/FOB/CIF/CFR/FCA/CPT/CIP/DAP/DDP
Q: What’s your product range?
A: Our product range includes screws, nuts, bolts, washers, spring,rivet, anchor and CNC parts.
Q: Are you trading company or manufacturer ?
A: We are manufacturer.
Screw Shaft Features Explained
When choosing the screw shaft for your application, you should consider the features of the screws: threads, lead, pitch, helix angle, and more. You may be wondering what these features mean and how they affect the screw’s performance. This article explains the differences between these factors. The following are the features that affect the performance of screws and their properties. You can use these to make an informed decision and purchase the right screw. You can learn more about these features by reading the following articles.
Threads
The major diameter of a screw thread is the larger of the 2 extreme diameters. The major diameter of a screw is also known as the outside diameter. This dimension can’t be directly measured, but can be determined by measuring the distance between adjacent sides of the thread. In addition, the mean area of a screw thread is known as the pitch. The diameter of the thread and pitch line are directly proportional to the overall size of the screw.
The threads are classified by the diameter and pitch. The major diameter of a screw shaft has the largest number of threads; the smaller diameter is called the minor diameter. The thread angle, also known as the helix angle, is measured perpendicular to the axis of the screw. The major diameter is the largest part of the screw; the minor diameter is the lower end of the screw. The thread angle is the half distance between the major and minor diameters. The minor diameter is the outer surface of the screw, while the top surface corresponds to the major diameter.
The pitch is measured at the crest of a thread. In other words, a 16-pitch thread has a diameter of 1 sixteenth of the screw shaft’s diameter. The actual diameter is 0.03125 inches. Moreover, a large number of manufacturers use this measurement to determine the thread pitch. The pitch diameter is a critical factor in successful mating of male and female threads. So, when determining the pitch diameter, you need to check the thread pitch plate of a screw.
Lead
In screw shaft applications, a solid, corrosion-resistant material is an important requirement. Lead screws are a robust choice, which ensure shaft direction accuracy. This material is widely used in lathes and measuring instruments. They have black oxide coatings and are suited for environments where rusting is not acceptable. These screws are also relatively inexpensive. Here are some advantages of lead screws. They are highly durable, cost-effective, and offer high reliability.
A lead screw system may have multiple starts, or threads that run parallel to each other. The lead is the distance the nut travels along the shaft during a single revolution. The smaller the lead, the tighter the thread. The lead can also be expressed as the pitch, which is the distance between adjacent thread crests or troughs. A lead screw has a smaller pitch than a nut, and the smaller the lead, the greater its linear speed.
When choosing lead screws, the critical speed is the maximum number of revolutions per minute. This is determined by the minor diameter of the shaft and its length. The critical speed should never be exceeded or the lead will become distorted or cracked. The recommended operational speed is around 80 percent of the evaluated critical speed. Moreover, the lead screw must be properly aligned to avoid excessive vibrations. In addition, the screw pitch must be within the design tolerance of the shaft.
Pitch
The pitch of a screw shaft can be viewed as the distance between the crest of a thread and the surface where the threads meet. In mathematics, the pitch is equivalent to the length of 1 wavelength. The pitch of a screw shaft also relates to the diameter of the threads. In the following, the pitch of a screw is explained. It is important to note that the pitch of a screw is not a metric measurement. In the following, we will define the 2 terms and discuss how they relate to 1 another.
A screw’s pitch is not the same in all countries. The United Kingdom, Canada, and the United States have standardized screw threads according to the UN system. Therefore, there is a need to specify the pitch of a screw shaft when a screw is being manufactured. The standardization of pitch and diameter has also reduced the cost of screw manufacturing. Nevertheless, screw threads are still expensive. The United Kingdom, Canada, and the United States have introduced a system for the calculation of screw pitch.
The pitch of a lead screw is the same as that of a lead screw. The diameter is 0.25 inches and the circumference is 0.79 inches. When calculating the mechanical advantage of a screw, divide the diameter by its pitch. The larger the pitch, the more threads the screw has, increasing its critical speed and stiffness. The pitch of a screw shaft is also proportional to the number of starts in the shaft.
Helix angle
The helix angle of a screw shaft is the angle formed between the circumference of the cylinder and its helix. Both of these angles must be equal to 90 degrees. The larger the lead angle, the smaller the helix angle. Some reference materials refer to angle B as the helix angle. However, the actual angle is derived from calculating the screw geometry. Read on for more information. Listed below are some of the differences between helix angles and lead angles.
High helix screws have a long lead. This length reduces the number of effective turns of the screw. Because of this, fine pitch screws are usually used for small movements. A typical example is a 16-mm x 5-inch screw. Another example of a fine pitch screw is a 12x2mm screw. It is used for small moves. This type of screw has a lower lead angle than a high-helix screw.
A screw’s helix angle refers to the relative angle of the flight of the helix to the plane of the screw axis. While screw helix angles are not often altered from the standard square pitch, they can have an effect on processing. Changing the helix angle is more common in two-stage screws, special mixing screws, and metering screws. When a screw is designed for this function, it should be able to handle the materials it is made of.
Size
The diameter of a screw is its diameter, measured from the head to the shaft. Screw diameters are standardized by the American Society of Mechanical Engineers. The diameters of screws range from 3/50 inches to 16 inches, and more recently, fractions of an inch have been added. However, shaft diameters may vary depending on the job, so it is important to know the right size for the job. The size chart below shows the common sizes for screws.
Screws are generally referred to by their gauge, which is the major diameter. Screws with a major diameter less than a quarter of an inch are usually labeled as #0 to #14 and larger screws are labeled as sizes in fractions of an inch. There are also decimal equivalents of each screw size. These measurements will help you choose the correct size for your project. The screws with the smaller diameters were not tested.
In the previous section, we described the different shaft sizes and their specifications. These screw sizes are usually indicated by fractions of an inch, followed by a number of threads per inch. For example, a ten-inch screw has a shaft size of 2” with a thread pitch of 1/4″, and it has a diameter of 2 inches. This screw is welded to a two-inch Sch. 40 pipe. Alternatively, it can be welded to a 9-inch O.A.L. pipe.
Shape
Screws come in a wide variety of sizes and shapes, from the size of a quarter to the diameter of a U.S. quarter. Screws’ main function is to hold objects together and to translate torque into linear force. The shape of a screw shaft, if it is round, is the primary characteristic used to define its use. The following chart shows how the screw shaft differs from a quarter:
The shape of a screw shaft is determined by 2 features: its major diameter, or distance from the outer edge of the thread on 1 side to the inner smooth surface of the shaft. These are generally 2 to 16 millimeters in diameter. Screw shafts can have either a fully threaded shank or a half-threaded shank, with the latter providing better stability. Regardless of whether the screw shaft is round or domed, it is important to understand the different characteristics of a screw before attempting to install it into a project.
The screw shaft’s diameter is also important to its application. The ball circle diameter refers to the distance between the center of 2 opposite balls in contact with the grooves. The root diameter, on the other hand, refers to the distance between the bottommost grooves of the screw shaft. These are the 2 main measurements that define the screw’s overall size. Pitch and nominal diameter are important measurements for a screw’s performance in a particular application.
Lubrication
In most cases, lubrication of a screw shaft is accomplished with grease. Grease is made up of mineral or synthetic oil, thickening agent, and additives. The thickening agent can be a variety of different substances, including lithium, bentonite, aluminum, and barium complexes. A common classification for lubricating grease is NLGI Grade. While this may not be necessary when specifying the type of grease to use for a particular application, it is a useful qualitative measure.
When selecting a lubricant for a screw shaft, the operating temperature and the speed of the shaft determine the type of oil to use. Too much oil can result in heat buildup, while too little can lead to excessive wear and friction. The proper lubrication of a screw shaft directly affects the temperature rise of a ball screw, and the life of the assembly. To ensure the proper lubrication, follow the guidelines below.
Ideally, a low lubrication level is appropriate for medium-sized feed stuff factories. High lubrication level is appropriate for larger feed stuff factories. However, in low-speed applications, the lubrication level should be sufficiently high to ensure that the screws run freely. This is the only way to reduce friction and ensure the longest life possible. Lubrication of screw shafts is an important consideration for any screw.